Theoret. Chim. Acta (Berl.) 37, 345-347 (1975) @ by Springer-Verlag 1975

Variational Calculations with a Hyperspherical Basis on Atomic Helium*

Glen O. Morrell^{**} and Dwayne L. Knirk***

Department of Chemistry, The Johns Hopkins University, Baltimore

Received October 29, 1974

We have recently formulated an expansion of the N electron wavefunction in an appropriate set of harmonics on the 3 N-dimensional hypersphere. Angular correlation appears in the usual way, while radial correlation appears as a "generalized angular" correlation. Calculations on $\frac{1}{S}$ helium have been performed to explore the convergence of this expansion. Energies for various angular approximations have been compared with Bunge's angular limits and show a fractional error $< 3.5 \times 10^{-4}$. A theoretical contraction procedure is shown to usefully reduce basis size without forfeiting accuracy-

Key words: Hyperspherical coordinates - Atomic wavefunctions

We report results from variational calculations on the ground state of ${}^{1}S$ helium using the hyperspherical expansion suggested previously $[1]$. The angular basis for these calculations consists of functions $\mathcal{S}(\gamma, l | \eta, \theta)$ with γ even [2]. The number γ describes radial correlation in terms of the γ th order Gegenbauer polynomial of cos $2\eta = (r_2^2 - r_1^2)/r^2$, while *l* describes angular correlation in terms of the *l*th order Legendre polynomial of $\cos \theta = \hat{r}_1 \cdot \hat{r}_2$.

We think this is the first actual calculation with such a trial wavefunction. An earlier calculation with hyperspherical coordinates was performed by Ermolaev and Sochilin [3J with basis functions dictated by available analytical results from the Fock approach [4]. Their results on several two-electron systems were quite good, No similar analytical results are known for N-electron systems to guide wavefunction construction; our purpose in doing these calculations is to assess the behavior of a general form not specifically tailored to the system. A calculation in this spirit has been reported recently by Whitten and Sims [5], but their results are not directly comparable to ours because they used a quite different angular basis.

^{*} Supported in part by a research grant to the Johns Hopkins University from the National Science Foundation.

^{**} Present address: Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514.

^{***} Present address: Department of Chemistry, The University of California, Berkeley, California 94720.

We have factored ψ as $e^{-\zeta r} \phi$ and dealt primarily with the form

$$
\phi = D_0 \pi^{-3/2} + \sum_{l=0}^{\bar{l}} \sum_{\gamma=0}^{\bar{\gamma}} \sum_{n=1}^{\bar{n}} D_{n\gamma l} r^n \mathscr{S}(\gamma, l | \eta, \theta).
$$
 (1)

Three aspects of this expansion have been investigated: convergence of n and γ summations for $l = 0$ to the s limit, contraction of basis functions, and convergence to the ground state.

Using only the constant term in Eq. (1), the wavefunction $e^{-\zeta r}$ has an energy of -2.49797 a.u., with the best exponent satisfying $\zeta^2 = -2E$ [2]. Following this qualitative guidance, we set ζ equal to 2.3 for all calculations here. For the s limit, we keep $l = 0$. The energy for $\bar{n} = 1$ and $\bar{y} = 4$ is -2.81996 ; energies for other combinations of \bar{n} and \bar{y} are in Table 1. A noteworthy feature of these results is their gentle convergence. We have made no selection of terms here. Indeed, there are no dominant terms beyond the first, just a gradual lessening of importance. Similar behavior occurred in the results of Whitten and Sims [5].

Table 1. Dependence of s limit energy on \bar{n} and \bar{y} . Exact result is -2.87903 ([10])

\overline{n}	⊽	12	20	28
\mathcal{L} 3		-2.85812 -2.87125 -2.87202 -2.87205	-2.86134 -2.87588 -2.87690	-2.86206 -2.87690 -2.87810

The seven terms with $n = 4$ gave a fractional energy lowering of only 10^{-5} . This can be explained through the "adiabatic" approach of Macek [6]. In both our work and that of Lin and Fano [7], we find the radial potential of the ground state to be deep and narrow (classical region $0.40 \le r \le 2.64$, minimum near $r = 0.68$.) Hence, $r^4 e^{-\zeta r}$ contributes very little in the energetically important region.

We have investigated the possibility of contracting our functions into a smaller variational basis. Previous study of the ¹S wavefunction [8] showed that all coefficients D_{1vl} are fixed by the cusp condition; call these u_{vl} . Defining an s limit cusp function $\chi_{10} = \Sigma u_{v0} \mathscr{S}(\gamma, 0|\eta, \theta)$, we used the s limit trial function

$$
\phi = D_0 \pi^{-3/2} + d_{10} r \chi_{10} + \sum_{\gamma=0}^{\overline{\gamma}} \sum_{n=2}^{\overline{n}} D_{n\gamma 0} r^n \mathcal{S}(\gamma, 0 | \eta, \theta).
$$
 (2)

This has the same terms as Eq. (1) with $l = 0$, but now a single variational coefficient d_{10} replaces all the D_{1y0} . The variational energy must increase, and we show this increase in Table 2 for various \overline{n} and \overline{y} . The results indicate that a considerable reduction of computational effort needs not significantly compromise the accuracy of the result. Generally, as \bar{n} increases, the variationally determined cusp approaches the theoretical one closely.

Results for the full expansion in Eq. (1) are in Table 3, where the γ and n summation limits are given for each type of *l* term. Energies of Weiss' 35 con-

0.01988 0.02115 0.00095 0.00113	ন্য ñ	12.	20	28
				0.02145
				0.00115
0.00016 0.00020				0.00028

Table 2. Increase in slimit energy when cusp coefficients have been fixed

Table 3. Energies for various angular limits

	\mathbf{v}	n	Е,	E_{i} ([9])	Limit (10)
о	28	৭	-2.87810	-2.87896	-2.87903
	8	2	-2.89954	-2.90036	-2.90052
2	8	\overline{c}	-2.90178	-2.90258	-2.90277
3	2		-2.90230	-2.90307	-2.90331
4	0		-2.90250	-2.90320	-2.90347

figuration wavefunction [9] are shown, as well as Bunge's angular limits [10]. Neither changing ζ nor scaling ψ brought significant improvements. Our error is almost all in the s limit; differences $E_{t+1} - E_t$ are nearly identical to differences in the limits. The spdf calculation was repeated with the theoretical term $r^2 \ln r \mathcal{S}(1, 1 | \eta, \theta)$ included and yielded an energy of -2.90241 , reducing the spdf error by 10%,

This test of the general hyperspherical expansion shows it is capable of good accuracy. Using results from the recursive solution of the Schrödinger equation $[8]$ to contract the basis offers the possibility of performing more extensive calculations with less work.

We thank Professor R. G. Parr for his helpful suggestions and criticisms of this work.

References

- 1. Knirk, D.L.: J. Chem. Phys. 60, 66 (1974)
- 2. White, R. J., Stillinger, F. H.: J. Chem. Phys. 52, 5800 (1970); to compare with them, we have $y = n l$ and $\mathcal{S}(\gamma, l|n, \theta) = \Phi_{n,l}(\frac{1}{2}\eta, \theta)$
- 3. Ermolaev, A. M., Sochilin, G. B.: Soy. Phys.-Doklady 9, 292 (1964)
- 4. Fock, V.: K. Nor. Vidensk. Selsk. Forh. 31, 138 (1958); Emolaev, A.M.: Vestn. Leningrad. Univ. 16, No. 16, 19 (1961)
- 5. Whitten, R.C., Sims, J.S.: Phys. Rev. A9, 1586 (1974)
- 6. Macek, J.: J. Phys. B: Proc. Phys. Soc., London 1,831 (1968)
- 7. Lin, C.D.: Phys. Rev. A 10, 1986 (1974; Fano, U., Lin, C.D.: Correlation of excited electrons. Presented at the Fourth International Conference on Atomic Physics, Heidelberg, July 1974
- 8. Knirk, D.L.: Proc. Nat. Acad. Sci. USA 71, 1291 (1974)
- 9. Weiss, A.W.: Phys. Rev. 122, 1826 (1961)
- 10. Bunge, C. F.: Theoret. Chim. Acta (Berl.) 16, 126 (1970)

Dr. D. L. Knirk Department of Chemistry University of California Berkeley, California 94720, USA